Delaunay Triangulation of Manifolds

نویسندگان

  • Jean-Daniel Boissonnat
  • Ramsay Dyer
  • Arijit Ghosh
چکیده

We present an algorithmic framework for producing Delaunay triangulations of manifolds. The input to the algorithm is a set of sample points together with coordinate patches indexed by those points. The transition functions between nearby coordinate patches are required to be bi-Lipschitz with a constant close to 1. The primary novelty of the framework is that it can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. The output is a manifold simplicial complex that is the Delaunay complex of a perturbed set of points on the manifold. The guarantee of a manifold output complex demands no smoothness requirement on the transition functions, beyond the bi-Lipschitz constraint. In the smooth setting, when the transition functions are defined by common coordinate charts, such as the exponential map on a Riemannian manifold, the output manifold is homeomorphic to the original manifold, when the sampling is sufficiently dense. Key-words: Delaunay triangulation, stability, algorithm, manifold ∗ Max-Planck Institut für Informatik, Saarbrücken, Germany [email protected] Triangulation de Delaunay de variétés Résumé : Nous présentons un cadre algorithmique pour construire des triangulations de Delaunay de variétés. L’entrée de l’algorithme est un ensemble de points ainsi que que des cartes locales euclidiennes indicées par ses points. Les fonctions de transition entre cartes voisines doivent être bi-Lipschitz avec une constante de Lipschitz proche de 1, mais pas nécessairement lisses. La principale nouveauté de notre approche est de permettre de traiter des variétés abstraites qui ne sont pas des sous-variétés d’un espace euclidien. L’algorithme produit un complexe simplicial qui est le complexe de Delaunay d’un ensemble perturbé des points d’entrée. On peut garantir que le complexe simplicial fourni est une variété. Dans le cas où les fonctions de transition sont lisses et que les cartes locales sont définies par l’application exponentielle sur une variété Riemannienne, le complexe calculé est homéomorphe à la variété originale quand l’échantillonnage est suffisamment dense. Mots-clés : triangulation de Delaunay, stabilité, algorithme, variété manifold Delaunay triangulation 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fun with Restricted Delaunay Triangulations

The restricted Delaunay triangulation is a subcomplex of the three-dimensional Delaunay triangulation that serves as a triangulation of a smooth surface embedded in three-dimensional space. It has proven itself as a mathematically powerful tool for surface meshing and surface reconstruction. I discuss two fascinating mathematical twists on these structures. First, I address a question of Bruno ...

متن کامل

Heegaard Splittings and Bounds for Closed Hyperbolic 3-Manifolds

We will develop a way to Delaunay Triangulate [LL] closed and compact hyperbolic 3-manifolds, and use this method of trianguation to produce Heegaard splittings of such 3-manifolds. This method of triangulating and splitting manifolds will allow us to produce a universal constant K = vol(B5 /4) vol(B /4) , where is half a Margulis constant for H, such that the Heegaard genus of a closed hyperbo...

متن کامل

Animation manifolds for representing topological alteration

An animation manifold encapsulates an animation sequence of surfaces contained within a higher dimensional manifold with one dimension being time. An iso–surface extracted from this structure is a frame of the animation sequence. In this dissertation I make an argument for the use of animation manifolds as a representation of complex animation sequences. In particular animation manifolds can re...

متن کامل

An obstruction to Delaunay triangulations in Riemannian manifolds

Delaunay has shown that the Delaunay complex of a finite set of points P of Euclidean space R triangulates the convex hull of P , provided that P satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay’s genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stron...

متن کامل

On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions

It is a well-known fact that, under mild sampling conditions, the restricted Delaunay triangulation provides good topological approximations of 1and 2-manifolds. We show that this is not the case for higher-dimensional manifolds, even under stronger sampling conditions. Specifically, it is not true that, for any compact closed submanifold M of Rn, and any sufficiently dense uniform sampling L o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018